MT-ENG-231 Rev. 12/02

HYDRAULIC AND ENERGY GRADE LINE CALCULATION WORKSHEET

Land user	Field Office			
Job description				
Location				
Location Date	Checked by	Date	Date	
Friction loss calculation method:				
Hazen Williams (C) Darcy-Weisbach	Mannings (n)Blasius/Darcy-Weisb	ach	_	
ENERGY GRADE AT BEGINNING OF	LINE			
If there is pressure at inlet:				
Pressure at beginning of pipeline psi x 0.433 Elevation at pipe entrance ft Energy grade line elevation at entrance		<u> </u>		
Gravity system:				
Water surface elevation = energy grade	e line elevation at entrance_	ft		
Pipe segment identification				
Type/class of pipe				
Nominal pipe diameter in.				
Pipe inside diameter in.				
Number of discharge segments (N)				
Segment length (L) ft.				
Design flow rate (Q) gpm				
Friction coefficient (C or n)				
Flow Area (A) sq. ft.				
Velocity in pipe (V) = Q/448.8A ft/sec.				
Velocity head (hv) = $V^2/2g$ ft.				
Friction loss (J) ft/100ft.				
Reduction coefficient to compensate				
for N discharges				
Head loss due to pipe friction (hf)ft.				

MT-ENG-231 Rev. 12/02

HYDRAULIC AND ENERGY GRADE LINE CALCULATION WORKSHEET

MINOR LOSSES

Pipe segment identification				
	•	•	·	•
Coefficients (K):				
Entrance				
Bends				
Valves				
Enlargement				
Contraction				
TOTAL K coefficients				
Total minor losses hm =				
K (V ² /2g) ft				
SEGMENT ENERGY/HYDRAU	LIC ELEVATION	ONS		
SEGMENT ENERGY/HYDRAU At beginning of segment: Energy grade line elevation	LIC ELEVATION	ONS		
SEGMENT ENERGY/HYDRAU At beginning of segment:	LIC ELEVATION	ONS		
SEGMENT ENERGY/HYDRAU At beginning of segment: Energy grade line elevation	LIC ELEVATION	ONS		
SEGMENT ENERGY/HYDRAU At beginning of segment: Energy grade line elevation = *E _{beg} Hydraulic grade line elevation	LIC ELEVATION	ONS		
SEGMENT ENERGY/HYDRAU At beginning of segment: Energy grade line elevation = *E _{beg} Hydraulic grade line elevation = *E _{beg} – hv	LIC ELEVATION	ONS		

^{*}E_{beg} and E_{end} is the energy grade line elevation at the beginning and end of the segment.